The top of the Ryzen 7000 package looks busy with a full complement of capacitors spread out across the PCB. This eliminates the need for capacitors that face into the socket, like the large arrays of capacitors we see spread among the LGA pads on Intel's processors. As such, the bottom of the chip is left clear to only house the LGA pad array. (Ryzen 7000 pad image from @execuFix - not official from AMD.)
Ryzen's capacitor arrangement necessitates the great-looking heatspreader — the company couldn't put the capacitors under the IHS due to heat issues — but it also likely eliminates any chance of AMD adding a third die to the chip. AMD has said that Zen 4 chips will top out at 16 cores and 32 threads at launch, just like the previous-gen Ryzen 5000 series. AMD has told us that AM5 will be a similarly long-lived socket as we saw with AM4, so it's possible we could see higher core counts in this socket in the future with newer generations of Ryzen.
A motherboard vendor shared a video of a Ryzen 7000 processor being slotted into the new AM5 socket but then removed the video. Luckily, we grabbed some screenshots before they took the video down. This new socket marks a big departure for AMD — the company is moving from its long-lived Pin Grid Array (PGA) AM4 sockets to a Land Grid Array (LGA) AM5 layout. Despite the entirely different LGA1718 socket interface (1718 pins), the AM5 socket will still support AM4 coolers. The AM5 socket measures 40x40mm and the Ryzen 7000 chips adhere to the same length, width, Z-height, package size, and socket keep-out pattern as the previous-gen models, enabling backward support for AM4 coolers. As an interesting aside, Intel's LGA 1700 socket has a higher pin density than the AM5 socket. That's partially because Intel has a large empty keep-out space in the center of its sockets to accommodate the capacitors on the bottom of the chip. In contrast, AMD has placed all capacitors on top of the PCB, thus allowing it to maximize socket area.
Interestingly, the Ryzen 7000 IHS says the chips were made and diffused in Taiwan, whereas Ryzen 5000 chips were diffused in Taiwan but made in the US.
An image of the underside of Ryzen 7000's integrated heat spreader (IHS), shared to a Facebook group by an unknown poster, has also emerged. We actually learn quite a bit about the chip from the image, such as that AMD will continue to use solder thermal interface material (TIM) with its Zen 4 Ryzen 7000 processors. The IHS also appears quite thick, which helps with thermal dissipation, thus easing cooling requirements.
We can also see the glue at each of the mounting points on the eight 'arms,' which is a departure from AMD's seal-all-around approach with the Ryzen 5000 chips. The two compute dies ride one edge of the heat spreader. As you can see, there isn't room for a third die inside the package unless AMD were to alter the die placements significantly.
Finally, we can clearly see the cutouts that make room for the surface mount devices (SMDs) on the top of the PCB (these are mostly capacitors). These top-facing SMDs will certainly add quite a bit of risk to delidding, but that would have limited appeal anyway, given that AMD uses solder TIM. The design does pose the risk of excess thermal paste squeezing out onto the capacitors, but that won't be a concern with non-conductive thermal pastes. If you use a conductive paste it could be safest to use a sealant, like clear fingernail polish, over the exposed capacitors nearest the heatspreader.
https://twitter.com/momomo_us/status...-we-know-specs
By expanding the above tweet, you can clearly see the alignment key etched into the processor that prevents incorrect installation into the socket. You can also expand the tweet thread to see further images of the socket and Ryzen 7000 processor.
Above you can see the AM5 socket compared to Intel's socket LGA 1700, along with the AM5 backplate and the open socket, all courtesy of an MSI live stream. AM5 will use both Lotes and Foxconn mounting hardware. We also have detailed AM5 diagrams in the above album, courtesy of Igor's Lab.